NEW ALWUROOD INTERNATIONAL SCHOOL, JEDDAH K S A

MATHEMATICS - Practice Paper
 Class - IX

Time Allowed: 3 hours
Maximum Marks: 90

General Instructions:

1. All questions are compulsory.
2. The question paper consists of 31 questions divided into four sections A, B, C and D.

Section-A comprises of $\mathbf{4}$ questions of $\mathbf{1}$ mark each; Section-B comprises of $\mathbf{6}$ questions
of $\mathbf{2}$ marks each; Section-C comprises of $\mathbf{1 0}$ questions of $\mathbf{3}$ marks each and Section-D comprises of $\mathbf{1 1}$ questions of $\mathbf{4}$ marks each.
3. There is no overall choice in this question paper.
4. Use of calculator is not permitted.

SECTION-A

Question numbers 1 to 4 carry one mark each.

1
Find the value of $\left(\frac{64}{25}\right)^{\frac{23}{2}}$.

Check whether $x 22$ is a factor of $x^{3} 23 x^{2} 15 x 26$.

Find the reflection of the point $\left(\begin{array}{ll}2 & 2 \\ 2\end{array}\right)$ in y-axis.

SECTION-B

Question numbers 5 to $\mathbf{1 0}$ carry two marks each. the lines l and n ?

If lines l and m are parallel and lines m and n are also parallel, then what can you say about

If z 50.064 , then find the value of $\left(\frac{1}{z}\right)^{\frac{1}{3}}$.

6
Evaluate using suitable identity : (105) ${ }^{3}$

In the figure, l ??m. If $\angle \mathrm{ABC} 5 \angle \mathrm{ABD} 5408$ and $\angle \mathrm{A} 5908$, then prove that $\triangle \mathrm{BCD}$ is isosceles.
7

8 In the given figure, if point C lies between A and B, then prove that $A B>A C$. Which Euclid's axiom is applied by you?

Write coordinates of the point which is the reflection of $(3,5)$ in y - axis. Then, write coordinates of the point which is the reflection of this point in x-axis.

The longest side of a right angled triangle is 125 m and one of the remaining two sides is 100 m . Find its area using Heron's formula.

SECTION-C

Question numbers $\mathbf{1 1}$ to $\mathbf{2 0}$ carry three marks each.

Examine whether $\sqrt{2}$ is rational or irrational

Find three irrational numbers between $\frac{5}{7}$ and $\frac{9}{11}$.

By long division write the quotient and remainder, when $2 x^{4} 1 x^{3} 13 x^{2} 14 \times 210$ is divided by $x^{2} 22 \times 21$.
Factorise : $\left(x^{2} 25 \times 16\right)^{2} 2\left(x^{2} 26 \times 18\right)^{2}$.
In a triangle $A B C, X$ and Y are the points on $A B$ and $B C$ respectively. If $A B 5 B C$ and $B X 5 B Y, 3$ show that AX5CY.

In the the figure, if $\angle \mathrm{PQR} 5 \angle \mathrm{PRQ}$, then prove that $\angle \mathrm{PQS} 5 \angle \mathrm{PRT}$.

If a transversal intersects two parallel lines, then prove that bisectors of alternate interior angles are parallel.

18
In the given figure, if AB ?? CD ?? EF , find the value of $(y 2 x):(y 1 x)$:

The adjacent sides of a parallelogram $A B C D$ measure 34 cm and 20 cm and the diagonal $A C$ measures 42 cm . Find the area.

SECTION-D

Question numbers 21 to 31 carry four marks each.

21 Give an example of two irrational numbers whose :
(i) difference is an irrational number
(ii) sum is an irrational number
(iii) product is an irrational number
(iv) division is an irational number

Justify also.

Express in the form of $\frac{p}{q}$:

If ab1bclca50, find value of $\frac{1}{\mathrm{a}^{2} 2 \mathrm{bc}} 1 \frac{1}{\mathrm{~b}^{2} 2 \mathrm{ca}} 1 \frac{1}{\mathrm{c}^{2} 2 \mathrm{ab}}$

Using factor theorem, find the value of 'a', if $2 x^{4} 2 a x^{3} 14 x^{2} 2 x 12$ is divisible by $2 x 11$.

Verify if 23 and 4 are zeroes of the polynomial $2 x^{3} 23 x^{2} 223 x 112$. If yes, then factorise the polynomial.

If alblc50, then prove that $a^{4} 1 b^{4} 1 c^{4} 52\left(b^{2} c^{2} 1 c^{2} a^{2} 1 a^{2} b^{2}\right)$

In the given figure, on a quadrilateral $A B C D$ shaped land in a village the Panchayat has constructed a school especially for girls. What value are they exhibiting by doing so ? How many triangles can be seen in the given figure ? Find measure of $\angle 1$.

Solve the equation a235575 and state which axiom you use here. Also give two more axioms other 4 than the axiom used in the above situation.

In the figure, if $l ? ? \mathrm{~m}, \angle 15(2 x 1 y) 8, \angle 45(x 12 y) 8$ and $\angle 65(3 y 120) 8$, find $\angle 7$ and $\angle 8$.

Find x and y in the given figure.

In $\triangle \mathrm{ABC}$ of the figure, BD and CD are internal bisectors of $\angle \mathrm{B}$ and $\angle \mathrm{C}$ respectively.Prove 4 that 18081y52x.

