NEW ALWUROOD INTERNATIONAL SCHOOL, JEDDAH
B.E.S.T. Group of Schools, K.S.A.

Affiliated to CBSE - New Delhi, Affiliation No. 5730008

Subject: Mathematics

Grade -8

WORKSHEET-2

Block 20: Dividing Expressions

37. $\left(-2 q^{4} c^{6}\right) \div q^{3} c^{2}=$ \qquad
$38.96 \mathrm{p}^{5} \mathrm{~m}^{10}-\div 12 \mathrm{p}^{5} \mathrm{~m}^{8}=$ \qquad
38. $-26 x\left(y^{2}-9 x y\right) \div(9 x-y)=$
39. $\left(x^{2}-y^{2}\right) \div(x+y)$
40. If area of the tennis court is $\left(20 x^{2}+10 x\right)$ and length of the tennis court is $2 x$. find the breadth of the tennis court?
41. Divide the expressions:
i) $\left(10 \beta^{4}-8 \beta^{3}+6 \beta\right) \div 2 \beta$
ii) $\left(64 a^{2} b^{2}+8 a^{2} b^{2}\right) \div 4 a^{2} b^{2}$
iii) $240\left(q^{2}-8 q+16\right) \div 24(q-4)$
42. Divide the expressions:
i) $\left(x^{2}+5 x+6\right) \div(x+3)$
ii) $\left(3 x^{2}-20 x+25\right) \div(3 x-5)$
iii) $\left(4 x^{2}+2 x-12\right) \div(x+2)$
iii) $\left(9 x^{2}+39 x+40\right) \div(3 x+5)$
43. Solve : $\left[\left(12 c^{3}+4 c^{2}\right) \div 4 c^{2}\right]+\left[\left(8 c^{2}+20 c\right) \div 4 c\right]$

Block 23: Area of Quadrilaterals

66. Plastic Box 1.5 m long, 1.25 m wide and 65 cm deep, is to be made. It is opened at the top, ignoring the thickness of the plastic sheet, determine:
i. The area of the sheet required for making the box.
ii. The cost of sheet, if a sheet measuring $1 \mathrm{~m}^{2}$ costs $\square 20$.
67. The area of trapezium is $1586 \mathrm{~cm}^{2}$ and distance between its parallel sides is 26 cm . If one of the parallel side is 84 cm . Find the other?
68. Find the area of a Rhombus whose diagonals are of lengths 20 cm and 5.20 cm ?
69. The diagonal of a parallelogram is 30 cm and the perpendicular drawn on it from the opposite vertices are 9.5 cm and 11.5 cm . Find the area of the parallelogram?
70. Find the area of the given polygons:
i.

ii) $\mathrm{AL}=10 \mathrm{~cm}, \mathrm{AN}=50 \mathrm{~cm}, \mathrm{AO}=60 \mathrm{~cm}, \mathrm{AM}=20 \mathrm{~cm}, \mathrm{AD}=90 \mathrm{~cm}$

Block 25: Volume

71. What will happen to the volume of a cuboid if its:
i. Length is doubled, height is same and breadth is halved?
ii. Length is doubled, height is doubled and breadth is same?
72. A cylindrical tank has capacity of $5632 \mathrm{~m}^{3}$. If the diameter if its base is 16 m . Find its depth?
73.A godown is in the form of a cuboid of measures $60 \mathrm{~m} \times 40 \mathrm{~m} \times 20 \mathrm{~m}$. How many cuboidal boxes can be stored in it if the volume of one box is $0.8 \mathrm{~m}^{3}$?
73. The volume of a cuboid whose length, breadth and height are $2 \mathrm{a}, 3 \mathrm{a}$ and 4 a is \qquad
74. The volume of a cylinder whose diameter is equal to its height is \qquad
75. Four Cubes each of side 6 cm , are joined end to end. Find the volume of the resulting cuboid?
76. The bottom of the tank measures $50 \mathrm{~m} \times 40 \mathrm{~m}$. Find its depth if it contains $4000 \mathrm{~m}^{3}$ of water.

Block 26: Laws of Exponents

45. Write exponential form: i) $\frac{16}{81}$
$\begin{array}{ll}\text { ii) } \frac{-1}{243} & \text { iii) } 243000\end{array}$
iv) 64×27
46. $3^{5} \times 3^{3}$ \qquad
47. $(-4.29)^{0}+5^{-2}$ \qquad
48. $\left(4^{2}\right)^{-3}=$ \qquad
49. Find the value of $a^{2}-(b+1)^{3}$ when $a=\frac{1}{2}$ and $b=\frac{-3}{4}$
50. True or false:
i) $\left(\frac{3}{11}\right)^{-2}$ is a whole number.
ii) $\left(\frac{2}{9}\right)^{-2} \times\left(\frac{9}{2}\right)^{2}=1$
51. Write in standard form:
i) 0.00000306
ii) 0.000045
iii) 836000000
52. Write in usual form :
i) 2.3456×10^{3}
ii) 6.34×10^{-5}
iii) 6×10^{8}
53. For any two non-zero rational numbers x and $y, x^{4} \div y^{4}$ is equal to (a) $(x \div y)^{0}$ (b) $(x \div y)^{1}(c)(x \div y)^{4}(d)(x \div y)^{8}$
54.Find the product of the cube of (-2) and the square of $(+4)$.
i) $\frac{5^{4} \times x^{10} y^{5}}{5^{4} \times x^{7} y^{4}}$
ii) $\frac{3^{2} \times 7^{5} \times 13^{6}}{21^{2} \times 91^{3}}$
iii) $\left(3^{-1}+4^{-1}+5^{-1}\right)^{0}$

$$
\text { iv) } \frac{3^{-5} \times 10^{-5} \times 125}{6^{-5} \times 6^{-5}}
$$

v) $\underline{9^{11} \times\left(x^{2}\right)^{5}}$
$27^{4} \times\left(\mathrm{x}^{3}\right)^{2}$

