Block 23: Perimeter and Area

28. If the area of a triangle is $36 \mathrm{sq} . \mathrm{cm}$ and height is 3 cm . What will be the base of the triangle \qquad
29.The area of the square park is the smae as of a rectangular park, if the side of the square park is 60 m , and the length of the rectangular park is 90 m , find the breadth of the recatngular park, Also, find the area of the rectangular park.
30.A rectangular plot of dimensions $30 \mathrm{~m} \times 20 \mathrm{~m}$ has a 2 m whole passage all around. Find the area of the passage.
29. find the area of the parallelogram whose base is 7 cm and height is 4 cm .
30. The area of a triangle is $50 \mathrm{sq} . \mathrm{cm}$ and its base is 12 cm . find its height.
31. Which triangle has more area?

6.5 cm

24 cm

12.6 cm
34. PQR is a right triangle, right angled at Q , with $\mathrm{AB}=5 \mathrm{~cm}$ and $\mathrm{BC}=6 \mathrm{~cm} . \mathrm{BD}$ drawn perpendicular to the hypotenus AC . Find the length of BD if $\mathrm{AC}=7 \mathrm{~cm}$.

35. From a rectangular cloth piece of length 2.4 m and breadth $1.8 \mathrm{~m}, 10$ small pieces of area $26.8 \mathrm{~m}^{2}$ each were cut out. What would be the area of the cloth that is left?

Block 28: Laws of Exponents

36. Write in exponential form: 512
37. Which is greater 2^{2} or 4^{2}
38. Write down the base and exponents for the following:
i) $(243)^{5}$
ii) $(-11)^{6}$
39. $(-900)^{0}=$
40. fill in the blanks
i) $\left(\frac{a}{b}\right)^{m}=\frac{a}{b^{m}}$
ii) $x^{2} y^{2}=(x y)-$
41. Simplify: i) $\left\{\left(4^{2}\right)^{3} \times 4^{2}\right\} \div 4^{8}$
ii) $(-5)^{4} \times(-7)^{4}$

$$
\text { iii) } \frac{5^{3} \times 3 \mathrm{xt}^{7}}{9^{2} \times 5^{3} \mathrm{xt}^{2}}
$$

42. Express in the standard form:
i) 9050200000
ii) $12,00,00,00,000$
43. Solve: i) $\left(10^{2}\right)^{5}$
ii) a^{5}

$$
\overline{a^{4} \times a^{3}}
$$

iii) $(-7)^{0} \mathrm{x}(-8)^{0}-1$

Block 25: Algebraic Expressions

44. Write degree of the following Algebraic Expressions:
i) $16 m^{2}-4 y$
ii) $14 x^{4}+13 \mathrm{x}^{3}-21 \mathrm{x}+6$
iii) 2.56
45. Write the algebraic expressions for the following statements:
i) Product of numbers a and b subtracted from 50 .
ii) Thrice the sum of two numbers x and y.
iii) four less than a number.
iv) Sunita'ssister is 5 years older than her.
46. Draw the factor tree for the following expressions:
i) $2 x y^{2}+7 x+2$
ii) $7 \mathrm{a}^{2-} 14 \mathrm{ab}+21$.
47. Write the constant terms for th given expressions:
i) $3 x^{2}-5 x+7$
ii) $a x^{2}+b x+c$
iii) $\mathrm{m}^{2}+\mathrm{n}^{2}+2 \mathrm{mn}$
48.Classify into monomials, binomials, and trinomials:
i) $25 a+b$
ii) $2 x-3 y+7 x$
iii) $7 x y-8 y^{2}+4$
iv) -191
48. Write the coefficient of the followingvariables given in the table.

Expressions	Coefficients
$-x^{2}+5 x+25$	$x^{2}=$
$22 m^{4}+3 y x+42 y^{3}$	$y^{3}=$
$2 x^{2}-5 x y$	$x=$

50. Find the value of the expression if $\mathrm{a}=2$ and $\mathrm{b}=1$
i) $a+3 y$
ii) $7-a b^{2}$

Block 26: Adding and Subtracting of Algebraic Expressions

51. Add the following:
i) $-3 a b, 17 a b, 13 a b$
ii) $2 \mathrm{pq}-3 \mathrm{c}, 14 \mathrm{c}+7 \mathrm{pq}, \mathrm{pq}-5 \mathrm{c}$
iii) $3 x^{2}+7 x+7,9 x^{2}-2 x+5$
52. Subtract:
i) $p^{2}-q^{2}$ from $3 p^{2}-5 q^{2}+7 p q$
ii) $g^{2}+h^{2}-2 g h$ from $g^{2}+h^{2}+2 g h$
iii) $-2 r^{2}+9 r-8 r^{2}$ from $9 r^{3}+5 r^{2}+11 r$
53. Simplify
i) $\left(3 x^{4}-3 x\right)-\left(3 x-3 x^{4}\right)$
ii) $\left(x^{2}+10 x+28\right)+\left(35 x^{2}+30 x-14\right)$
54. What should be added to $a+2 b-3 c$ to get $3 a$?
55. Take away $10 \mathrm{x}^{4}+7 \mathrm{x}+5 \mathrm{x}^{5}$ from $-7 \mathrm{x}^{5}+14-2 \mathrm{x}$.
56. In a classroom, the numbers of girls are 50 more than the four times the number of girls. What are total number of students in the classroom?

Block 15: Congruence of Triangles

57. $\triangle \mathrm{XYZ}$ and $\triangle \mathrm{LMN}$ are congruent under the correspondence $\mathrm{XYZ} \rightarrow$ LMN. Write thecorrespondence of all the parts.
58.For the following figures, write the congruence condition and corresponding parts:

iii)

58. The symbol used to represent congruent triangles is: \qquad
59. If $\Delta \mathrm{PQR} \cong \Delta \mathrm{LMN}$, then:
a) $\mathrm{PQ}=\mathrm{LN}$
b) $\mathrm{PQ}=\mathrm{MN}$
c) $P Q=L M$
d) $\angle \mathrm{R}=\angle \mathrm{L}$
60. Two line segments are congruent if their lengths are \qquad
61. Which one of the following is not a criterion for congruency of triangles?
a) ASA
b) RHS
c) SSS
d) AAA
62. In $\angle A=\angle D, \angle B=\angle E$ and $A B=D E$, then $\triangle A B C \cong \triangle D E F$ by which condition. \qquad
63. If $\triangle \mathrm{ABC}$ and $\triangle \mathrm{DEF}$ are equilateral triangles and $\mathrm{AB}=\mathrm{XY}$. The condition under which $\triangle \mathrm{ABC} \cong \triangle \mathrm{DEF}$ is \qquad .
64. $\triangle \mathrm{XYZ}$ is isosceles with $\mathrm{XY}=\mathrm{XZ}$ and $\angle \mathrm{XTZ}=90^{\circ}$. Show that $\triangle \mathrm{XTY} \cong \triangle \mathrm{XTZ}$, by RHS congruence condition.

66.In the figure below, it is given that $\mathrm{AE}=\mathrm{CE}$ and $\angle \mathrm{A}=\angle \mathrm{C}$. Show that $\triangle \mathrm{AEB} \cong \Delta$ CED

